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Abstract

A set of three-dimensional failure criteria for laminated fiber-reinforced composites,
denoted LaRCO04, is proposed. The criteria are based on physical models for each
failure mode and take into consideration non-linear matrix shear behaviour. The
model for matrix compressive failure is based on the Mohr-Coulomb criterion and it
predicts the fracture angle. Fiber kinking is triggered by an initial fiber misalignment
angle and by the rotation of the fibers during compressive loading. The plane of
fiber kinking is predicted by the model. LaRC04 consists of 6 expressions that can
be used directly for design purposes. Several applications involving a broad range
of load combinations are presented and compared to experimental data and other
existing criteria. Predictions using LaRCO04 correlate well with the experimental
data, arguably better than most existing criteria. The good correlation seems to be
attributable to the physical soundness of the underlying failure models.

1 Introduction

The greatest difficulty in the development of an accurate and computationally
efficient numerical procedure to predict damage has to do with how to model



the material micro-structural changes and how to relate those changes to the
material response. The results of the Word Wide Failure Exercise (WWFE)
[1] indicate that—even for simple unidirectional layup and in-plane loading—
current failure models and criteria fall short of providing a satisfactory de-
scription and prediction of failure. In fact, the mechanisms that lead to failure
in composite materials are not fully understood yet.

If composite materials are to be used in structural applications, then the un-
derstanding of how each failure mode takes place—i.e. having a physical model
for each failure mode—becomes an important point of concern. These phys-
ical models should establish when failure takes place, and also describe the
post-failure behaviour. For instance, a physical model for matrix compression
failure should predict that failure occurs when some stress state is achieved, as
well as what orientation should the fracture plane have and how much energy
should the crack formation dissipate.

The main failure modes of laminated fiber-reinforced composites are:

Delamination. Composite materials made of different plies stacked together
tend to delaminate. The bending stiffness of delaminated panels can be signif-
icantly reduced, even when no visual defect is visible on the surface or the free
edges. The physics of delamination is to a certain degree understood, and one
of the best numerical tools to predict the propagation of delamination consists
on the use of Decohesion Elements. These elements have been developed [2,3],
and implemented in a commercial Finite Element (FE) code [4]; no further
discussion of delamination as a failure mode is thus carried here.

Matrix compression failure. What is commonly referred to as matrix com-
pression failure is actually shear matrix failure. Indeed, the failure occurs at
an angle with the loading direction, which is evidence of the shear nature of
the failure process.

Fiber compression failure. This failure mode is largely affected by the resin
shear behaviour and imperfections such as the initial fiber misalignment angle
and voids. Typically, kinking bands can be observed at a smaller scale, and
are the result of fiber micro-buckling, matrix shear failure or fiber failure.

Matrix tensile failure. The fracture surface resulting from this failure mode
is typically normal to the loading direction. Some fiber splitting at the fracture
surface can usually be observed.

Fiber tensile failure. This failure mode is explosive. It releases large amounts
of energy, and, in structures that cannot redistribute the load, it typically
causes catastrophic failure.

In this work, the LaRCO03 plane stress criteria [5] are extended to account for



general three-dimensional (3D) loading and for in-plane shear non-linearity.
Matrix compressive failure is addressed with a modified 3D version of the
Puck [6] matrix compression failure criterion. For the fiber failure in compres-
sion, a 3D criterion based on Argon’s [7] approach considering matrix failure
prompted by material imperfections is used in a framework similar to the one
proposed in LaRCO02 [8] and LaRCO03 [5]. A failure model for matrix in tension
and shear is derived from Dvorak and Laws’s [9] fracture mechanics analyses
of cracked plies, as in LaRCO03 [5].

Section 2 presents the background on damage mode-based failure criteria. The
LaRCO04 failure criteria are developed and proposed for each failure mode in
Section 3. Examples and validation follow in Section 4, and conclusions are
presented in Section 5. A summary of the LaRC04 criteria is presented in
Appendix.

In the following sections, the index 1 refers to the longitudinal (fiber) direction,
the index 2 refers to the in-plane transverse direction and the index 3 refers
to the through-the-thickness direction.

2 Damage mode-based failure criteria

Strength-based failure criteria are commonly used to predict failure events in
composite structures. A large number of continuum-based criteria have been
derived to relate stresses and experimental measures of material strength to
the onset of failure. Paris [10] discusses the ad hoc nature of the formulation
of most strength-based criteria.

Hashin [11,12] and Puck [13,14] are credited for establishing the need for fail-
ure criteria that are based on failure mechanisms. In his 1973 proposal [11],
Hashin used his experimental observations of failure of tensile specimens to
propose two different failure criteria, one related to fiber failure and the other
related to matrix failure. The criteria assume a quadratic interaction between
the tractions acting on the plane of failure. In 1980 [12], he introduced fiber
and matrix failure criteria that distinguish between tension and compression
failure. Given the difficulty in obtaining the plane of fracture for the ma-
trix compression mode, Hashin used a quadratic interaction between stress
invariants. Such derivation was based on logical reasoning rather than mi-
cromechanics. Although the Hashin criteria were developed for unidirectional
laminates, they have also been applied successfully to progressive failure anal-
yses of laminates by using in-situ unidirectional strengths to account for the
constraining interactions between the plies [15]. The two-dimensional versions
of the failure criteria proposed by Hashin in 1973 and 1980 are summarized
in Table 1.



Table 1
Hashin criteria for plane stress

Constituent Tension Compression

1973 Fly = ()% + (22)°

Matrix — Fly = (2)°+ (22)° 1980: FIy = (%) +
2
v () - e @

Fiber FIp = (A)2+(ﬁ%)2 FIp=—-2

Numerous studies conducted over the past decade indicate that the stress
interactions proposed by Hashin do not always fit the experimental results,
especially in the case of matrix or fiber compression. It is well known, for in-
stance, that moderate transverse compression (092 < 0) increases the apparent
shear strength of a ply, which is not predicted by Hashin’s criterion. In addi-
tion, Hashin’s fiber compression criterion does not account for the effects of
in-plane shear, which significantly reduces the effective compressive strength
of a ply. Several researchers have proposed modifications to Hashin’s criteria
to improve their predictive capabilities.

More recently, the WWFE [16] was conducted to assess the real predicting
capability of the current available failure criteria. Leading researchers in fail-
ure of composites were invited to participate in a round-robin in which they
presented their approaches and predictions.

In the exercise, Hart-Smith [17,18] presented the original version of the max-
imum strain criterion, as well as a truncated form and a generalized form of
the criterion. Gotsis et al. [19] used the maximum stress criterion, superposed
with a modified distortion energy (quadratic polynomial) criterion. McCart-
ney [20] applied the principles of mechanics at the microstructural level to
predict damage formation. Rotem [21] used a criterion originally published in
1973 [11], but with the matrix failure criterion modified in order to account
for axial stresses. Surprisingly, Sun and Tao [22] used the Hashin-Rotem crite-
rion [11], even though Sun had proposed previously [23] a criterion for matrix
cracking that is acknowledged to represent better the matrix failure [8]. Liu
and Tsai [24] used the Tsai-Wu [25] failure criterion. Wolfe and Butalia [26]
used a strain-energy based failure criterion, containing a sum on exponents of
the longitudinal, transverse and shear strain energies. Edge [27] used a phe-
nomenological approach based on the stress interaction within each failure
mode, with some similarities to the maximum stress, the Hashin-Rotem [11]
and Hashin [12] criteria. Zinoviev [28] used the simple maximum stress crite-
rion. Puck and Schiirmann [6] were perhaps the authors who achieved better
agreement between their predictions and the experiments. Their criterion is
phenomenological, as different failure modes are considered. Arguably, their
model for matrix compression failure possesses the most sound physical basis



of the theories proposed in the exercise.

Several lessons can be learned from the WWFE. Firstly, most criteria were
unable to capture some of the trends in the failure envelopes of the experimen-
tal results. Secondly, on what concerns phenomenological failure criteria, most
expressions proposed to predict each failure mode are still to some extent em-
pirical. It is somewhat difficult to choose between the criteria due to the lack of
experimental data needed to validate them against each other. Despite several
efforts to develop sound phenomenological criteria, non-phenomenological cri-
teria like Tsai-Wu [25] are often better prediction tools than some phenomeno-
logical criteria [24]. Although test results are not provided in the WWFE
for several stress combinations that remain open for discussion, significant
progress was made. From the limited predictive capabilities of the most accu-
rate analyses available, it is clear that further developments in failure model
theories and criteria are required before any analysis approach can be used
with confidence to predict the strength of a typical aerospace composite com-
ponent.

3 LaRCO04 criteria for matrix failure

3.1  Tensile matrix failure

3.1.1  Chritical energy release rates for non-linear shear behaviour

This subsection generalizes the expression given by Laws [29] for the energy
release rate for an elliptical crack in a composite with a non-linear shear be-
haviour. The procedure presented here uses Eshelby’s [30] application of the
eigenstrain problem to solve the stress field around an oval crack, in a frame-
work similar to Laws’s [29]. Since the referred procedure is considerably com-
plex, and yet not devoid of approximations, an alternative generalization that
leads to the same result is presented in the Appendix. This alternative gen-
eralization is much simpler, though cruder; it is pragmatic in the sense that
no complex mathematical manipulations are required, and the result follows
from the concept of critical energy release rate and intuitive approximations.

The Eigenstrain problem Consider an infinite solid that undergoes some
physical process that will generate some inelastic strain. The physical process
could for instance be plastic deformation or phase transformation. Probably
due to the later, this inelastic strain is commonly called transformation strain.
The problem consists in determining the stress and strain fields due to the
transformation strains.



The total strain tensor € in the transformed region is the sum of an elastic
strain tensor £ with the transformation strain tensor e':

g =%+ ¢ (1)

The stresses result from the elastic component of the strain,

U:C:gel:C:(s—5t>. (2)
Neglecting body forces acting on the body, the equilibrium equation is
Vig=C:(V-e-V-&)=0 (3)
and can be written as

C:V.e—b'=0 (4)

where b! is a fictitious body force distribution defined as
b'=C:(V-'). (5)

If the transformation strains are known, then Eq. (4) can be solved for ¢ using
Fourier transforms or Papkovich-Neuber potentials [31,32].

Consider the particular case of an elliptic region in an infinite body, undergoing
change of form that, without the constraint imposed by the surrounding ma-
terial would result in an arbitrary homogeneous strain &’. The elliptic region,

defined by , , ,
(@) () +C) =2 ®

has volume V' and is bounded by the surface S. The fictitious body forces are
in this case nil everywhere except on the surface S where they are

(O RTRIC R .

n being the normal to the ellipsoid and 0 () the Dirac delta function.

Within the ellipsoid, the total strain field ¢ = € + ¢* is uniform and can be
expressed as [29]

e=P:C:¢ (8)
where the fourth order tensor P results from solving Eq. (4) with b’ from Eq.
(7), and depends on the elastic properties of the material and geometry of the
ellipsoid only. The derivation of the tensor P can be found in Refs. [31,32].
The stress field is then obtained as

0=C:c"=C:(e-¢')=—(C-C:P:C):c'=-Q:c' (9



with
Q=C-C:P:C. (10)

Eshelby’s inclusion problem Eshelby [30] showed that the eigenstrain
problem can be used for the determination of the stress and strain fields due
to an elliptic inclusion. Consider an elliptical inclusion with constitutive tensor
C* in a homogeneous infinite solid with constitutive tensor C. Suppose next

that the solid is loaded by a uniform stress or strain at infinity, ¢*>° and £,
respectively. The stress and strain in the solid can be expressed as
oc=0"4+0¢ and e=e*+¢€ (11)

where ¢ and £ are the uniform stress and strain tensors induced in the
solid if the inclusion was not present, while & and £ represent a perturbation
due to the presence of the inclusion.

The perturbation due to the inclusion can be computed using the eigenstrain
analogy. In fact, the stress field ¢ = > solves the equilibrium equations
everywhere in the solid, except in the inclusion, where the error in the stress
is uniform: (C* — C) : €. This suggests that the stress state can be corrected
by using a transformation strain inside the inclusion. For the inclusion and
the transformed region to be equivalent, the stress in both cases must be the
same. For the case of the hypothetical transformed region, the stress is

J:Czael:C:(e—st) (12)
while in the case of the inclusion, the stress tensor is obtained as
c=C":¢. (13)

For the transformed region to be equivalent to the inclusion, then Egs. (12)
and (13) can be equated, resulting in

C:(e—et):C*:e. (14)

Decomposing the strain in its two components €* and &, and considering FEq.
(8), then Eq. (14) is obtained as

(C*=C):e*=[C-(C-C":P:C]:£" (15)
For a void, C* = 0 and Eq. (15) reduces to

e=Q o™ (16)



The determination of & in Eq. (16) is an important result, since the strain
and stress at the cavity wall follow as

=X +Ei=+P:C:e'=e+P:C:Q o™ (17)
c=C:ec. (18)

The interaction energy can be defined as the energy released by the introduc-
tion of a cavity [29]. Following from Eshelby’s work for a linear material [30],
the interaction energy for a solid loaded at infinity can be written as

i

where V' is the volume of the cavity.

t

o> : det] dv = V/8 o> de (19)
0

The solution for a crack was obtained from the solution for an ellipsoidal
cavity by Laws [29]. Laws considered first an infinite elliptic cylinder by letting
¢ — 00, then expressed the interaction energy per unit length of the cylinder
in a form similar to
et b

Ei = 7ra26/0 o™ de', with e = o (20)
and proceeded to a crack by making ¢ — 0. Since the tensor Q becomes
singular when € — 0, but not the product eQ~!, some care has to be taken.
Eq. (20) can be transformed in

%)

B = 7Ta2/0 o> eQ7: do®™. (21)

Making € — 0 and defining A = eQ~?, the interaction energy can be expressed
as

oo

Ei = 7Ta2/0 o™ : A do™ (22)

where the non-zero components of the tensor A were calculated by Laws [29].
Assuming a non-linear shear behaviour, Eq. (22) can then be written as

Ez'nt -

3
Q

2 Ao 2 Ao 2 2 2 Ao d
22029 T No3Tos + 0 T124)190T12

2( ro 2 o 2 T2
Ta (A22022+A23723+2/0 712d712>

N RN~ -

ma® [A303 + A3y + X (12)] - (23)
where x (712) is defined as

Y12
X (712) = 2/0 T12dV12 (24)



and, from Laws [29],

() -
22 23 E22 E11 :

It is important to take into account some simplifications of the previously
presented formulation:

(i) Laws [29] derivation of the crack tensor A is only approximate.

(ii) The superposition principle has been used, and it is not strictly valid for a
non-linear shear behaviour. It is not clear if an expression for the interaction
energy such as Eq. (23) could also be derived without using superposition.

In-plane shear contribution to the critical energy release rates The
in-plane shear contribution to the critical energy release rate can be com-
puted from Eq. (23) with 099 = 793 = 0. Suppose that the dimension of the
crack in the longitudinal direction is aj. Proceeding like Dvorak and Laws
9], the change in cracked area for crack propagation in the transverse direc-
tion is A = 2ar0a, and the critical energy release rate for the case of crack
propagation in the transverse direction is obtained as

o aG/LE"L'm‘/ o 1 aEwmt o TQo u
=94 9 da, = TX (712) (26)

GT

where ~j, is the engineering shear strain at failure. For crack propagation in
the longitudinal direction, the change in cracked area is 0A = 2a,0ar, and the
critical energy release rate is defined as

aa Ezn E@'n 7TCLO u
Gf: gAt: t = 4X(712)- (27>

2a,

3.1.2  In-situ effect

A failure criterion to predict matrix cracking under the presence of both in-
plane shear and transverse tensile stresses should represent the ‘in-situ’ effect
occurring in laminated composites. The in-situ effect, originally detected in
Parvizi’s tensile tests of cross-ply glass fiber reinforced plastics [33], is char-
acterized by higher transverse tensile and shear strengths of a ply when it
is constrained by plies with different fiber orientations in a laminate, when
compared with the strength of the same ply in a unidirectional laminate. The
in-situ strength also depends on the number of plies clustered together, and
on the fiber orientation of the constraining plies.

The orientation of the constraining plies and the number of plies clustered
together also affect the crack density and the stiffness reduction of the cracked
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Fig. 1. Transverse tensile strength as a function of number of plies clustered together,
with models from Dvorak [9] based on experimental data from Wang [34].

ply. Wang’s [34] tests of (0/90,/0) (n = 1,2,3,4) carbon/epoxy laminates
have shown higher crack densities for thinner 90° layers. The reduction of the
elastic properties of a cracked ply is normally predicted using elastic analyses
of cracked plies [15,35] or Continuum Damage Models [36-39].

The in-situ effect is illustrated in Fig. 1, where the relation between the in-situ
transverse tensile strength and the total thickness of the 90° plies clustered
together is represented.

Accurate in-situ strengths are necessary for any stress-based failure crite-
rion for matrix cracking in constrained plies. Both experimental [34,40,41]
and analytical methods [9,35,42] have been proposed to determine the in-situ
strengths. In the following, the in-situ strengths are calculated using fracture
mechanics solutions for the propagation of cracks in a constrained ply.

3.1.3  Fracture Mechanics Analysis of a Cracked Ply
The failure criterion for predicting matrix cracking in a ply subjected to in-

plane shear and transverse tension proposed here is based on the fracture
mechanics analysis of a slit crack in a ply, as proposed by Dvorak and Laws

10
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Fig. 2. Slit crack geometry (after Dvorak [9])

[9]. The slit crack represents a manufacturing defect that is idealized as lying
on the (1,3) plane, as represented in Fig. 2. It has a length 2a, across the
thickness of a ply, ¢t. Physically, this crack represents a distribution of matrix-
fiber debonds that may be present in a ply as a consequence of manufacturing
defects or from residual thermal stresses resulting from the different coefficients
of thermal expansion of the fibers and of the matrix. Therefore, the slit crack is
an ‘effective crack,’ representing the macroscopic effect of matrix-fiber debonds
that occur at the micromechanical level [34].

The transverse tensile stress g9 is associated with mode I loading, whereas
the in-plane and transverse shear stresses 75 and Ty3 respectively are associ-
ated with mode II loading. The crack represented in Fig. 2 can grow in the
1 (longitudinal, L) direction, in the 3 (transverse, T') direction, or in both
directions.

The components of the energy release rate for the crack geometry represented
in Fig. 2 were determined by Dvorak and Laws [9] for a linear orthotropic
material and an extension of their analysis for non-linear shear behaviour has
been presented here. For mixed-mode loading, the energy release rate for crack
growth in the T" and L directions, G(T') and G(L), respectively, are given by

G(T) = ™22 [njAS,0% + 17 A35735 + 03X (12)]

(28)
G(L) =" (€7 M350, + €71 A33T3s + EFrrx (712)]

where it can be observed that the energy release rate G(L) for longitudinal
propagation is a function of the transverse slit size and that it is not a function
of the slit length in the longitudinal direction.

The parameters n;, @ = [, 11,11 in Eq. (28) are stress intensity reduction
coefficients for propagation in the transverse direction, and the parameters
&, 1 = 1,111,111 are reduction coefficients for propagation in the longitudi-
nal direction. These coefficients account for the constraining effects of the
adjoining layers on crack propagation: the coefficients are nearly equal to
1.0 when 2a, < t, and are less than 1.0 when a, ~ t. Experimental re-
sults [41] have shown an increase in the in-situ transverse tensile strength
of [+60/90,]s,0 = 0°,30°,60°, laminates for increasing stiffness of adjoining
sublaminates 46. This implies that the value of the parameter 7; decreases

11



with increasing stiffness of adjoining sublaminates. Considering that a trans-
verse crack can promote delamination between the plies, Dvorak and Laws
[9] suggested that the effective value of 7; can be larger than obtained from
the analysis of cracks terminating at the interface, and suggested the use of

ni=6&=1

The mode II and III components of the energy release rate are combined in a
shear mode, Ggy, as
Gsy =G+ G (29)

Such an approach was initially proposed by Li and Sen [43] and Li [44], and
used in the simulation of delamination using the Virtual crack Closure Tech-
nique (VCCT) and decohesion finite elements [2]. By combining modes II and
II1, it is not necessary to track the relative orientation of the crack front with
respect of the in-plane displacement jumps. In addition, no conclusive evi-
dence is available showing that G;;. and Gy, are different. In fact, there is
no standard for measuring Gy;;.. Furthermore, there is no mixed-mode test
method for mixed mode II and mode III loading.

The components of the energy release rate are then obtained for the T-
direction using Eq. (28) with n; = 1:

T,

Gi(T) = TAgzagz (30)
o [\ o
Gsu(T) = =~ [A237223 + X(’m)} : (31)
The corresponding components of the fracture toughness are given as
Tao |, 2
GrelT) = =745, (YY) (32)
Ta, "
Gsne(T) = =X (712%) (33)

where YT is the in-situ transverse tensile strength, and ~},.. is the in-situ

S

in-plane shear ultimate strain.

For propagation in the longitudinal direction, the mode I and mode II com-
ponents of the energy release rate are

Ty |,
Gi(L) = TA220§2 (34)
o [\ o
Gsn(L) = —— [A237'223 +X (’712)} (35)
and the components of the fracture toughness are
Ty |, 2
Gre(L) = =7, (V) (36)

12



Ta,

— X ('ﬁzw) : (37)

GSHC<L> = 4

Having obtained expressions for the components of the energy release rate and
fracture toughness, a failure criterion can be applied to predict the propaga-
tion of the slit crack represented in Fig. 2. Under the presence of in-plane and
transverse shear, as well as transverse tension, the critical energy release rate
G, depends on the combined effect of all microscopic energy absorbing mech-
anisms such as the creation of new fracture surface. Relying on microscopic
examinations of the fracture surface, Hahn [45] observed that the fracture
surface topography strongly depends on the type of loading. With increasing
proportion of the stress intensity factor Kj;, more hackles are observed in
the matrix, thereby indicating more energy absorption associated with crack
extension. Hahn proposed a mixed-mode criterion written as a first-order poly-
nomial in the stress intensity factors K; and K;;. Written in terms of the mode
I and mode II energy release rates, the Hahn criterion is

Gy (i) Gp(7) n Gsp(i) —1, i=T1L (38)

(1-9) Gro(i) + gGlc(z‘) Gsme(i)

where the material constant ¢ is defined from Eqs. (36) and (37) as g =
G1./Gsyge which leads to the following expression for g:

A (V)

X (Vi) . (39)

9

A failure index for matrix tension can be expressed in terms of the ply stresses
and in-situ strengths by substituting either Eqs. (30)-(33) or (34)-(37) into the
criterion in Eq. (38) to get

2
Ao 2
LaRCO4 #1  FIy = (1—g) %Jrg (?ﬁ) + 237;?;“)712) — 1. (40)
1S 1S 1211s

The criterion presented in Eq. (40), with linear and quadratic terms in o9, a
quadratic term in 753 and a term on the in-plane shear internal energy,  (712),
is similar to the criteria proposed by Hahn [45], Liu [24] (for transverse tension
and in-plane shear), and Puck [6]. It can be observed that using ¢ = 1 in Eq.
(38) results in the linear version of the criterion proposed by Wu and Reuter
[46] for the propagation of delamination in laminated composites

Gr  Gp
+ =1. 41
GIC GIIC ( )
Furthermore, using g = 1, assuming linear in-plane shear, and neglecting

Toz, Eq. (40) reverts to the well-known Hashin criterion [11] for transverse
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Fig. 3. Unidirectional specimen with initial crack (after Dvorak [9])

matrix cracking under both in-plane shear and transverse tension, where the
ply strengths are replaced by the in-situ strengths

2 2
022 T12

e = () - (3) - "

Finally, the non-linear term in Eq. (40) is also found to be similar to the

strain-energy based criterion proposed by Sandhu [47], later used by Chang
and Scott [48].

3.1.4  Application to unidirectional laminates

The application of the fracture mechanics analysis of a cracked ply to unidirec-
tional laminates yields expressions relating toughness values to crack dimen-
sions which can subsequently be used to relate the strength of thick embedded
plies to that of a unidirectional laminate.

Dvorak and Laws [9] regarded the fracture of a unidirectional specimen as
the fracture of an unconstrained thick ply, with the critical initial slit crack
located at the surface of the laminate. For tensile loading, the crack can be
located at the edge of the laminate, which increases the energy release rate
when compared with a central crack. In the case of shear loading, there is no
free edge, so the crack is a central crack, as shown in Fig. 3. The defect size
is 2a, and is considered to be much smaller than the ply thickness, 2a, < t.

For unidirectional laminates, the crack will grow unstably in the transverse
direction [9], and Egs. (32), (33), (36) and (37) apply with a geometric fac-
tor which is obtained from the classic solution of the free edge crack [5,49],
resulting in

GrolT) = 1.12%ma A3 (Y7T)* (43)

Gsne(T) = maox (V12) (44)

where Y7 is the transverse tensile strength and %, is the in-plane shear strain
at failure, for a unidirectional laminate.

The toughness ratio g can also be calculated in terms of the unidirectional
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Fig. 4. Geometry of slit crack in a thick embedded ply subjected to tension and
shear loads

properties by using Eq. (43) and (44), resulting in

3.1.5 In-situ strength of thick embedded plies

A thick ply is defined as one in which the length of the slit crack is much
smaller than the ply thickness, 2a, < t, as illustrated in Fig. 4. The minimum
thickness for a thick ply depends on the material used. For E-glass/epoxy
and carbon/epoxy laminates, Dvorak and Laws [9] calculated the transition
thickness between a thin and a thick ply to be approximately 0.7mm , or about
5 to 6 plies.

For the geometry represented in Fig. 4, the crack can grow in the transverse or
in the longitudinal direction. Comparing Eqs. (30) and (31) to Egs. (34) and
(35), however, indicates that the energy release rate for the crack slit is twice
as large in the transverse direction as it is in the longitudinal direction. Since
Egs. (30) and (31) also indicate that the energy release rate is proportional to
the crack length, the crack will grow unstably in the transverse direction. Once
the crack reaches the constraining plies, it can propagate in the longitudinal
direction, as well as induce a delamination.

Crack propagation is predicted using Eq. (40), and the in-situ strengths can
be calculated from the corresponding fracture toughness, as expressed in Egs.
(32) and (33). For mode I, the in-situ transverse tensile strength is defined
from Eq. (32) as

2G (T
yr_ [26e(@) (16)
Tao A3,
and, taking into account Eq. (43),
v =112v2y7. (47)

For a thick embedded ply loaded in pure in-plane shear, the expressions get
more complex due to shear non-linearity. The in-situ in-plane ultimate strain
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is obtained as

Ta,

S (QGH(T)) (15)

and, taking into account Eq. (44),

Yimis = X [2x (112)] - (49)

Considering the constitutive law for the shear behavior to be expressed by the
function fop such that

7= JfeL (7), (50)
then the in-situ in-plane shear strength is defined as
st = fCL (7?2\1‘5) : (51)

As a particular case of non-linear in-plane shear behaviour, consider the poly-
nomial relation between the shear strain and the shear stress proposed by
Hahn and Tsai [50],

Y12 = G70'12 + 50':132. (52)
12
With the non-linear shear law expressed in Eq. (52), Eq. (48) reverts to

2
(SL) 3 4
_ 18 < L
Gsne(T) = may | oo+ 46(515) (53)
and Eq. (44) can be written as
ORI
Gisne(T) = 2map | S + B(S) (54)

Equating Egs. (53) and (54), the in-situ shear strength of a thick embedded
ply, SE, can be related to the shear strength of a unidirectional laminate:

2 2
(57) 3, quy_ (55)

") | ° L\* _ L

G2 * Qﬁ (S ) 2G12 - ﬁ (Sw> ‘ (55)
The in-situ shear strength of an thick embedded ply, S

i., 1s the positive, real
root of Eq. (55):

w +5 (259" 1 183(51)") (Gua)? 1
SL —
* 3G 2

(56)

It can be observed from Egs. (47) and (56) that the in-situ strengths of thick
embedded plies—Y;I, and SL—are independent of the ply thickness, as has

18?7
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Fig. 5. Geometry of slit crack in a thin embedded ply

been observed by Dvorak and Laws [9] and Leguillon [51], and as was shown
in Fig. 1. The general expression for SZ in Eq. (56) can be written for a linear
material by letting § tend to zero, in which case the in-plane shear strength
come as

SL —\/28Y  for a linear shear law. (57)

Eq. (57) is equal to the one obtained by Dvorak and Laws [9] and Davila et
al. [5] for a linear shear behaviour.

3.1.6  In-situ strengths of thin embedded plies

Thin plies are defined as having a thickness smaller than the typical defect, t <
2a,, so the slit crack represented in Fig. 2 extends across the entire thickness
t of the ply, as represented in Fig. 5.

In the case of thin plies, crack defects can only grow in the longitudinal (L)
direction, or trigger a delamination between the plies. The in-situ strengths can
be calculated from the components of the fracture toughness, as expressed in
Egs. (36) and (37). For transverse tensile loading, the corresponding strength
is expressed as

8GIC(L)

vy = | /2 58
For a thin embedded ply loaded in pure in-plane shear, the ultimate in-plane
shear strain is defined as
_1 (8Gsnuc(L)
Y =X | /L 59
T12iis X ( Tt ( )

and the in-situ in-plane shear strength is defined as
Sk = for (Vo) - (60)

Considering again Eq. (52) as a particular case of non-linear in-plane shear
behaviour, Eq. (59) can be written as

(S 3 i Gen(L)
Tem +T6ﬁ (Sis) =T 0 (61)

The in-situ shear strength of a thin ply, S&

187

is the positive real root of Eq.
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(61):

48Gsp (L
\/1_’_5 SH( )<G12>2—1
SL — L
* 30G12

It can be observed from Egs. (58) and (62) that the in-situ strengths are
dependent on the thickness t.

(62)

Eq. (62) can be written for a linear material by letting [ tend to zero, in which
case the shear strength come as

8G12Gsmc(L)

Tt

Sk = for a linear shear law. (63)

Eq. (63) is equal to the one obtained by Dvorak and Laws [9] and Dévila et
al. [5] for a linear shear behaviour.

If in the absence of specific data, the toughness values Gj.(L) and Ggp.(L)
can be assumed to have the values measured by standard Fracture Mechanics
tests, such as the DCB for mode I and the ENF test for mode II. Using Eq.
(58), Dvorak and Laws [9] obtained a good correlation between the predicted
and experimentally obtained in-situ tensile strengths of both thick and thin
90° plies in [0/90,,/0] laminates, as was shown in Fig. 1.

3.2 Compressive matriz failure

Matrix compression specimens fail by shear, which would suggest that the an-
gle of the fracture surface with the through-the-thickness direction, as shown
in Fig. 6(a), should be «, = 45°, i.e., along the plane of the maximum shear
stress. However, experiments indicate that the angle of fracture under uniaxial
compression is generally o, = 53 £ 2° for most technical composite materi-
als [6,52,53]. The fact that «, > 45° can be explained by the existence of
a compressive stress acting on the potential fracture surfaces, and its associ-
ated friction. The magnitude of the compressive stress, and hence the friction
stress, is maximum for a fracture surface with o, = 0° and decreases mono-
tonically until a, = 90°, in which case the compressive (and friction) stress is
zero. Although the shear stress is maximum for «, = 45°, the friction stress
which opposes fracture, decreases with larger values of the angle a,. As a
result, fracture is expected for values of a, larger than 45°, where a critical
combination of shear and normal stress acts.

Experimental evidence on the fracture surface of specimens failing by matrix
compression suggest that the Mohr-Coulomb (M-C) criterion is applicable to
the matrix compression failure; Puck [13] and Puck and Schneider [14] were
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the first to propose a matrix failure model for composites based on the M-C
criterion.

The M-C criterion is commonly used in applications where fracture under ten-
sion loading is different from fracture under compression loading, such as in
soil mechanics or in the fracture of cast iron. The application of the M-C crite-
rion to multiaxial failure of epoxy resins was studied by Kawabata [54] based
on correlation with his own test results. While studying the failure of chopped
glass-fiber /epoxy mat laminates under confining pressures, Boehler and Raclin
[55] found the Tsai-Wu criterion to be inadequate, and formulated a shearing
criterion based on the M-C criterion that fit his experimental measurements
well. Taliercio and Sagramoso [56] used the M-C criterion within a non-linear
micromechanical model to predict the macroscopic strength properties of fiber
composites.

The M-C criterion is represented geometrically by the diagram illustrated in
Fig. 6(b). The Mohr’s circle represents a state of uniaxial compression. The
angle of the plane of fracture is a,. The M-C criterion postulates that in a
state of biaxial normal stress, fracture occurs for any Mohr’s circle that is
tangent to the M-C fracture line.

DiLandro and Pegoraro [57] explain the role of internal friction on the strength
of carbon-fiber composites by noting the absence of chemical bonds between
fiber and matrix, and that adhesion is attributed to Van der Waal’s interac-
tions. When subjected to an external load, the shear slipping of the two phases
is prevented until the shear stress at the fiber-matrix interface reaches a lim-
iting value. DiLandro and Pegoraro also note that the friction coefficient is an
empirical factor that encompasses all chemical-physical interactions, includ-
ing the thermal residual shrinkage of the matrix around the fiber. Larson and
Miles [58] examined the relative effects of interfacial friction and roughness on
the length of interfacial sliding which proceeds from the tip of an impinging
fracture oriented perpendicular to the interface. According to Larson, sliding
is key to the cracking behavior of fibrous brittle matrix composites in that it
affects the stress concentration on the fibers, the matrix crack spacing, and,
therefore, the global toughness of a composite material.

For a general loading situation, shown in Fig. 6(c), the angle of the fracture
plane with the through-the-thickness direction, denoted as «, might assume a
different value than the one for pure compression («,). The orientation of the
fracture plane depends on the particular combination of shear (77 and 71) and
normal (o,,) tractions for each value of «, shown in Fig. 6(d). In plane-stress
formulations, the tractions at potential fracture planes are obtained from the
in-plane shear stress 75, the compressive stress g99, and the fracture plane
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Fig. 6. (a) Pure transverse compression failure, for a CFRP specimen; (b) stresses
in the fracture plane; (c) geometrical representation of the Mohr-Coulomb criterion;
(d) fracture plane for a 3D stress state;

angle a by using the transformation equations

022

On =5 (1 + cos (2a))
7T = —% sin (2a) (64)

7l =715 cos ().
In a 3D formulation, the tractions are obtained from the components of the
stress tensor and the fracture plane angle a:

o O99 + 033 022 — 033
i o 2_ o 2

T —% sin (2ar) + 73 cos (2a) (65)

7L = 715 cos (a) + 731 sin ()

cos (2ar) + o3 sin (2a)

T

where « is comprised in the interval |—m, 7].

The M-C failure criterion is expressed in terms of the tractions in the frac-
ture plane, and can be written in several forms. Considering first the case
where 7 = 0 (i.e., 712 = 0 for the 2D formulation), the M-C criterion can be
expressed as

77|+ 0o, = ST (66)
where 7 is a friction coefficient and S7 is the transverse (to the fibers) shear
strength. The geometrical representation of this criterion in a (o,|7|) space is
a line with negative slope (—n7), shown in Fig. 6(b). In this figure, the Mohr
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circle corresponding to the case of pure compression is represented through
a semi-circumference tangent to the M-C criterion’s line. The slope of the
M-C criterion’s line can be related to the angle of the fracture plane in pure
transverse compression, «,, through

1
tan(2q,) = o (67)
Furthermore, writing Eq. (66) for a pure compression case establishes the
relation between ST, Y¢ and ay:

ST = Y€ cos (ay) <sin (o) + 1:(;18((20;))> . (68)

The angle a, can be easily determined from simple compression tests. The
parameters 7 and ST are calculated from a, using Eqs. (67) and (68).

The M-C criterion (Eq. (66)) can be expressed in several forms, namely con-

sidering that friction affects (increases) the strength,
]
ST — 7o,

—1, (69)

or that is affects (decreases) the applied stress,

I +nlo,
where the operator (-) is the Mc Cauley bracket defined by
0<=x<0
(x) = , r eR. (71)
r<=x>0

Motivated by those two different forms of expressing the same criterion for
7l = 0, Puck and Schiirmann [6,52] initially proposed for the general case

(" #0)

7T 2 L 2
Fly=——-+ — ] <1 72
M (ST_UTO.n> + <SL_nLo-n> = (72)

whereas it was proposed, first for the LaRCO02 [8], and after for the LaRC03*
[5] failure criteria

2

FU4(<”W+WEJ)2+(<#’+#fJ) R

ST St

1 For the LaRCO03 criteria [5], the in-situ longitudinal shear strength SZ was con-
sidered in equation 73 instead of ST
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where n’o, and n’o, are shear stresses due to friction. While Puck and
Schiirmann (Eq. (72)) consider that the compression stress (o) increases the
effective strength, LaRC02 and LaRCO03 (Eq. (73)) consider that the compres-
sion stress reduces the effective shear stress. For reasons of simplicity, Puck
and Schiirmann [6,52] transformed Eq. (72) into

T 2 L 2
FIy = 2(7 ) + 2(T ) <1 (74)
(ST —2nTS%a,  (SE)” —2ntSto, —

Eq. (74) is obtained by expanding the denominators in Eq. (72) and neglecting
the terms in (0,)*. Puck and Schiirmann [6] have shown that it is possible to
solve Eq. (74) in a closed form for the angle of the fracture plane « in the case
of a plane stress situation.

To obtain the friction coefficient % in the absence of experimental data, Puck
and Schiirmann [6] suggest the relation

1= (75)

where 77 is computed using Eq. 67 and S is computed using Eq. 68. This
suggestion has also been considered for the LaRCO02 [8] and LaRCO03 criteria

[5]-

The comparison of the criteria expressed in Egs. (72), (73) and (74) is shown in
Fig. 7 for a E-glass/DY063 epoxy used in the WWFE, with material properties
presented in Table 2. Also shown in Fig. 7 is the much simpler Sun [23] criterion

FI —<U22)2+ o\ (76)
M \ye St —nltoy ) —

The Sun criterion also represents a similar trend in the failure envelope, al-
though it is not based on a physical mechanism of failure.

While the initial and final Puck criteria (Egs. (72) and (74)) yield similar
results, LaRCO3 criterion (Eq. (73)) is less conservative. This is related to the
fact that the effect of friction is over-estimated in Eq. (73). Indeed, affecting
the shear tractions by a friction term as in Eq. (73) over-estimates the friction
forces whenever both 77" and 7% are acting simultaneously [59]. As Fig. 8(a)
represents, supposing a very simple case with isotropic friction (n? = n’), the
friction stresses are over-estimated by a factor of v/2 when using Eq. (73).

It is interesting to notice the effect that an orthotropic friction model has on
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Table 2
Mechanical properties of a E-glass/DY063 epoxy used in the WWFE, from Soden

et al. [60]

G2 SL X¢ y¢ o,
(GPa) (MPa) (MPa) (MPa) (°)
5.83 73 800 145 93

T (MPa)
Puck (1998) (initial formulation)
coincident with LaRC04 + 120
LaRC02 &
LaRCO03 + 100
\ 180
1 60
Puck (1998)
(final formulation) 140
120
1 1 1 1 1 ‘ ‘ ‘ 0
-160 -140 -120 -100 -80 -60 -40 -20 0
G, (MPa)

Fig. 7. Failure envelopes for transverse compression and inplane shear

zjf—ric = ,7T X an X COS(H)

T-frric =I7X0'n
A Tfric :/7X\/§0'n z-fric :Hxan
A with 7 =77 cos(8))’ + (7" sin(6))’
- O » 1t =n"xo,xsn(9)
Z-fric. :ﬂxan
(a) (b)

Fig. 8. (a) Overestimation of the friction stress; (b) model that does not overestimate
the friction stresses

LaRCO03 criterion (Eq. (73)). A reasonable model for orthotropic friction is

fric. T T
- 0ol (=
? o | : I (77)
7L O " ] i
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Fig. 9. Failure envelope for the LaRC04 matrix failure criterion, using Eq. 81 and
several values for the angle of the fracture plane, a

or, simplifying,

% = o, cos (6) 7
T{MC' = 0,n" sin (0)

where 0 is the angle formed by the shear-traction vector 7 and the transverse
direction in the fracture plane, i.e., § = arctan (TL/TT).

The LaRCO03 criterion given by Eq. (73) can be modified using Eqs. (78) to
account more accurately for the friction terms, which results in

Fr (<‘TT‘ +no, cos (0)>) . (<)7L‘ + nto,, sin (9)>> <1 (1)

ST St

Interestingly, the modified criterion given by Eqgs. (79) yields an envelope that
is coincident with Puck’s initial criterion (Eq. (72)), as shown in Fig. 7.

The use of one of Egs. (72), (73), (74), and (79) for the failure criterion implies
the use of the set of Eqs. (65) for the transformation of stresses. In turn,
this means that the fracture angle has to be known. In theory, it could be
analytically determined as

OF I,
oo

a = 0. (80)

Puck and Schiirmann [6] have solved Eq. 80 for the criterion in Eq. (74) in
a plane-stress situation, but it is not possible to do the same with Eqgs. (72),
(73) and (79) for 3D stress states. However, Fig. 9, drawn using the data from
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Table 2 and Puck’s initial criterion (Eq. (72)), shows that it is possible to
draw the envelope with reasonable accuracy by using a very small number of
trial angles.

Since it is not possible to obtain a closed-form solution for the fracture angle in
a generic 3D situation, there does not seem to be a reason to drop the physical
significance of the criteria expressed through Egs. (72), (73) and (79). As it
was demonstrated, Eq. (73) over-estimates the friction stresses. Since Egs.
(72), (79) yield similar results, but Eq. (72) is simpler, the later is proposed
for LaRC04,

TT 2 TL 2
LaRC04 #2 Fly = () + <SL> <1 (81)

ST o, o

where it should be noted that the in-situ longitudinal shear strength SZ is
used, as was proposed for LaRC03 [5].

4 LaRCO04 criteria for fiber failure
4.1  Tensile fiber failure

The LaRC04 criterion for fiber tensile failure is a non-interacting maximum
allowable stress criterion. Consequently, the LaRC04 failure index for fiber
tensile failure is simply

011

4.2 Compressive fiber failure

Fiber compression failure is a field where significant research is still being per-
formed. For matrix compression failure, a relatively simple mechanical model
as the one proposed by Puck and Schiirmann [6,13,14,52] seems to correctly
represent failure, and can be easily expressed as a failure criterion that can
be incorporated in numerical codes. Depending on the material, different fiber
compressive failure modes are possible [61]:

Microbuckling. This failure mode consists of the microbuckling of the fibers
in the elastic matrix. The first mechanical model for this failure mode can be
tracked back to Rosen’s work [62] where the fibers are represented by infinite
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beams? in an elastic matrix and failure is attained when the compressive load
equals the buckling load. This model provides an upper bound for the failure
stress, as it generally predicts a failure stress typically two to three times larger
than the experimental one (for carbon reinforced composites [61]). Models
based on microbuckling have been widely studied over the last decades. For
these models, the matrix shear properties as well as material imperfections
play an important role.

Kinking. Kinking can be defined as the localized shear deformation of the
matrix, along a band. Typically, the fibers break at the edges of the band, and
sometimes also in the interior. It should be noted that some authors consider
kinking as a consequence of microbuckling, while others consider it as a sepa-
rate failure mode [61]. Argon [7] was the first to develop a mechanical model
for fiber kinking as a separate failure mode. For Argon, failure is the result
of matrix shear failure, prompted by an initial fiber misalignment. For this
model, and those that follow it, matrix elastic behaviour and initial material
imperfections play an important role.

Fiber failure. Fiber failure can be expected to occur for fibers with low
compressive strength, such as Aramid, but is not expected to happen for
carbon, glass or boron fibers [61].

Rosen [62] was the first to propose a mechanical model to describe fiber mi-
crobuckling. By minimizing the internal energy, Rosen obtained the fiber’s
buckling stresses. The analysis was performed for two instability modes: (i)
an extension mode, where the deformed shapes of adjacent fibers are in oppo-
sition of phase; and (ii) a shear mode, where the deformed shapes of adjacent
fibers are in phase. Rosen found that for composites with a high fiber volume
fraction, the shear mode is critical, and the associated stress is

_Gm
1=V

X¢ (83)
where G, is the shear modulus of the matrix and V7 is the fiber volume frac-
tion. Considering the rule of mixtures, Eq. (83) reduces to X¢ = G, i.e., the
shear modulus of the composite. This relation (Eq. (83)) was later modified to
account for an elastic-perfectly plastic resin [63]. In fact, several modifications
were attempted, in order to incorporate less restrictive hypotheses (see Ref.
[61] for a state of the art review). However, Rosen’s approach yields smaller
failure stresses than similar models assuming linear elasticity and straight
fibers [61] and is simpler. Still, there is little success in predicting the fail-
ure stress of advanced composites using Rosen’s result. The problem is that,
when compared to experimental data, Eq. (83) gives results typically 1.5 times

2 In fact, Rosen’s approach is 2D and the fibers are thus represented by layers
(plates), and not beams
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higher for Boron composites, 2 to 3 times higher for carbon composites and 4
times higher for glass composites [61]. It was with the introduction of geomet-
ric non-linearity and initial fiber misalignment that the prediction got closer
to the experimental results.

Schultheisz and Waas [61] pointed out that most buckling models tend to repli-
cate the model-composite that was studied by Greszczuk [64-67]. Greszczuk
performed a series of experiments on model-composites whose reinforcements
consisted of either (i) rods (of steel or aluminum) having diameters in the
range 0.5 to 3.2mm; or (ii) aluminum plates with thickness in the range
of 0.3 to Imm . The basic idea was to duplicate the 2D geometries used in
the analytical models. Greszczuk found that the compressive strength of his
model-composites exceeded Rosen’s prediction. However, when including the
energy associated with bending of the fibers, Greszczuk found good agree-
ment. He also concluded that while his model-composites with low-modulus
matrix failed by microbuckling, those with intermediate-modulus matrix failed
by longitudinal cracking (matrix cracking), and composites with high-modulus
matrix failed through compression of the fibers.

Most buckling models follow the 2D approach of Rosen [62]. However, real
technical composites are 3D structures. It has been suggested [68,69] that
3D effects may be a cause of the reduction in the failure stress from Rosen
model. Indeed, evidence of the 3D aspect of fiber microbuckling has been re-
ported in the literature [70,71]. One important 3D consideration, discussed
by Schultheisz and Waas [61], is the arrangement of fibers and matrix, which
induce different types of interaction (among the fibers and matrix) during the
buckling for different packing densities. Furthermore, the laminated construc-
tion may lead to different fiber arrangements within the plane of a lamina
and in the through-the-thickness direction. Fiber misalignment angles have
first been reported to be smaller in the through-the-thickness direction [72],
but more recent results suggest they are similar in magnitude [73]. Models in-
corporating 3D aspects were attempted [67,74-78], and Schultheisz and Waas
[61] concluded that FE analysis would be an excellent candidate to handle the
3D aspect of microbuckling.

In most high fiber-volume-fraction advanced composite materials, compressive
failure is seen as a failure mode which is localized in a band across the speci-
men in which the fibers have rotated by a large amount, and the matrix has
undergone large shearing deformation—kinking. A schematic representation of
a kink band is shown in Fig. 10(a). In the literature, kinking is often seen as a
consequence of microbuckling, and not a failure mode itself. However, kinking
is other times identified as an independent failure mode. On the discussion on
whether or not kinking is a consequence of microbuckling, the main argument
has to do with the orientation of the kink-band boundary. Indeed, if kinking is
a consequence of microbuckling, then one would expect the kink-band bound-
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Fig. 10. (a) Kinking band; (b) fiber misalignment frame

ary to lie normal to the loading axis (original fiber direction), i.e., to lie in the
plane of highest bending stresses. In Fig. 10(a), this would mean an angle 3
equal to zero. However, it is found that in most cases (3 lie in the range of 30°.
On the other hand, the similarity between the kink bands and shear bands
may suggest that shear is the main factor at the onset of kink-band formation.
In this case, it would be expected that kink bands would occur in the planes
of maximum shear stress, i.e., for § = 45°. Some thick kink bands have been
found near 45° [61], but this is generally not the case.

Another argument supporting kinking as a separate failure mode was intro-
duced by Chaplin [79], who noted that microbuckling should occur everywhere
in the composite at about the same time, whereas kinking in his experiments
was clearly initiated from some kind of defect.

Effendi [80] carried a set of experimental tests on different carbon-fiber com-
posites and also carried an analytical buckling analysis, which included initial
fiber waviness, and computed the stresses in the fiber and matrix constituents.
He found that before the buckling load was attained, the stress levels in the
constituents exceeded the respective failure stress. To refine the modelling, he
conducted a numerical FE analysis, where a non-linear matrix behaviour was
incorporated. The results confirmed that constituent failure happened first.
Composites with small initial imperfections or weaker fiber would fail by fiber
failure, while in composites with large initial imperfections or stronger fibers,
the matrix would fail first.

On their review of the state of the art on compression failure of composites,
Schultheisz and Waas [61] concluded that the experimental observations on
the kinking phenomenon support the contention that kink bands seen in high
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fiber-volume-fraction advanced composite materials occur via a mechanism
that is different from the global microbuckling mode suggested by Rosen [62].
Furthermore, in advanced composites, kinking seems to be initiated by local
microstructural defects, such as fiber misalignments and longitudinal (matrix
or interfacial) cracking. Therefore, kinking is better understood by treating
the problem of stress redistribution, including dynamics, and including both
non-linear geometry and material response.

Whether kinking is a result of fiber microbuckling or a separate failure mode, it
is the most common failure feature observed after testing. The kink-band angle
and kink width were studied by Hahn [81] for carbon fiber composites (CERP),
glass fiber composites (GFRP) and Aramid fiber composites (AFRC). The
kink-band angle (3, and the band width w, were found to be the smaller for
CFRP at room temperature (8 ~ 20° and w ~ 0.07 to 0.2mm ). For GFRP
no clear kink bands were observed at room temperature. However, at 100°C,
a kink angle § ~ 30° and a width w ~ 1.2mm were observed. For AFRP
tested at room temperature, the kink angle was found as 3 &~ 40° and width
w ~ 0.45mm . Chaplin [79] noted the angle of rotation of the fibers in the kink
band was twice the angle (3, so that no volumetric changes happened in the
kinked region.

Argon [7] was the first researcher to provide a model for kink-band formation.
In his model, it is assumed that an initial fiber misalignment exists, which
leads to shearing stresses between the fibers. The shearing stresses would act
as to further rotate the fibers, which would in turn lead to further increase
in the shear stresses. This closed-loop effect would then lead to failure. The
main result from his analysis is the relation between the compressive failure
stress, X¢, the matrix in-plane shear failure stress, S*, and the initial fiber
misalignment angle ¢°:

SL
= o
From Argon’s analysis, a kink-band angle § = 45° should also result. Several
authors since reported the sensitivity of the compressive failure stress to the
shear failure stress [82-85]. Budiansky [84] later extended Argon’s analysis to

X (84)

SL

X =
e

(85)

where v* is the shear strain at failure. Failure occurs when the shear failure
stress is reached.

4.2.1 2D Kinking model

Consider a unidirectional composite with a misaligned region being com-
pressed, as depicted in Fig. 10(b). The stresses in the misalignment frame

29



are
011 + 02 011 — 022

Oimim = 5 + 5 cos (2¢) + T2 sin (2¢p)
Ogmom = o JQF o2 o1 ; 92 o (2¢0) — T2 sin (2¢) (86)
O11 — 099 .
T17n2'm == —% Sin (2()0) + 7-12 COS (2@) .
For failure under pure compression (o1, = —X¢ and o9y = 715 = 0), Eqgs. (86)
lead to
Ofmim = =X cos? () ,
O%mom = X sin? () and (87)

Tingm = X sin () cos () .

The stress state in the misalignment coordinate frame can now be used to
check for fiber kinking. For a material with linear shear behaviour, replacing
it in an appropriated matrix failure criterion leads directly to the expression for
the specific value of the misalignment angle ¢ at failure for a pure compression
case—°. For a material with non-linear shear behaviour, it will become clear
at the end of this section that kinking can result either from (i) matrix failure
(i.e. the verification of a matrix failure criterion), or (ii) instability, due to the
loss of (shear) stiffness for larger shear strain values.

Without loss of generality, suppose first the case of failure by the verification
of an appropriate matrix failure criterion.

Case 1 Kinking for pure compression as the result of matrix failure

Using LaRC04 matrix compression failure criterion, Eq. (81), the expression
for the specific value of the misalignment angle ¢ at failure for a pure com-
pression case () is obtained as

X¢ (sin (¢°) cos (¢°) — n" sin? (gpc)) = st (88)

The angle ¢° is the sum of an initial misalignment with the rotation due to
loading. Eq. (88) can be solved for ¢¢ [5], resulting in

1—\/1 ($e+n") 5

2 (e + ")

¢ = arctan (89)

It can be observed that by neglecting n*, and assuming ¢¢ to be small and
constant, Eq. (88) yields Argon’s equation (Eq. (84)). In fact, assuming all
the above but not that ¢ is constant yields Budiansky’s Eq. (85).

From the constitutive law, the shear stress in the misaligned frame is obtained
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as a function of the shear strain

Timom = for(Yimom) (90)

and from the transformation equations (Eqgs. (86)), the shear stress in the
same frame for pure axial compressive failure is

1
Timgm = 5 sin (2¢°) X©. (91)

Equating Egs. (90) and (91), the shear strain at failure for a pure axial com-
pression case, Y{mgm, is obtained as

(1. c
Yoo = Jb (55 (20 X€) (02)

For instance, for a material with a linear shear strain vs. shear stress behavior,
Eq. (92) becomes simply

sin (2¢°) X¢
Imgm = ——— . 93
Tima2 2G1, (93)

Assuming small angle approximations, a simpler expression for Eq. (93) can
be obtained,
. X
Y{mom = . 94
1m2 G]_Q ( )

Either way, the initial misalignment angle comes then as

7= ¢ = Yimgm (95)
where Y§mqm can be defined through Egs. (92), (93) or (94).

Writing Eq. (92) in the form

C 1 : (o] C
for (Vimgm) = B) sin [2 (7 + Ymgm)] Xx¢ (96)

and plotting the left and right hand side of it in a (7, 7) space and provides
insight into the meaning of the solution of Eq. (92). Fig. 11(a) represents both
sides of Eq. (96) for a material with linear shear behaviour.

The Left Hand Side (LHS) of Eq. (96) is the shear strain vs. shear stress ma-
terial law. The Right Hand Side (RHS) of Eq. (96) represents the shear stress
resulting from the compressive longitudinal loading, in a rotated coordinate
system. As the compressive stress increases, the ‘RHS’ curve corresponding
to a general stress level shifts up, and the intersection with the ‘LHS’ curve
defines the strain in the misalignment frame 7;mqm. At failure (when the com-
pressive stress equals X©), the strain in the misalignment frame is defined as
Vimgm and is shown in Fig. 11(a).
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Fig. 11. Left and Right hand side of Eq. (96), for a material with a (a) linear
shear behavior, (b) non-linear shear behavior, and failure by matrix cracking, and
(c) non-linear shear behavior, and failure by instability

For a material with non-linear shear behaviour, there could be more than
one intersection point for each stress level, as represented in Fig. 11(b) for the
particular case of failure onset. For such a non-linear material, the equilibrium
position, which defines the orientation of the misaligned frame, corresponds
to the first intersection (lower energy). As the compressive loading increases,
the ‘RHS’ curve corresponding to a general stress level shifts up, and the
intersection with the ‘LHS’ curve defines the strain in the misalignment frame
Yymom. At failure (when the compressive stress equals X¢), the strain in the
misalignment frame is defined as 7¢mom and is shown in Fig. 11(b). Therefore,
Vi{mom has to correspond to the first intersection of the two curves. However,
this is not guaranteed by the solution of Egs. (89), (92) and (95). If the referred
solution corresponds to the second intersection, then the solution is not valid
and failure is due to a different mechanism, which is now discussed.

Case 2 Kinking for pure compression as the result of instability

A second mechanism that can promote fiber kinking is elastic instability of the
matrix, due to the softening character of the constitutive law. As a composite
is progressively loaded in compression, the curve ‘RHS’ in Fig. 11(b) shifts
up, also progressively. Suppose that at the moment the two curves (‘LHS’
and ‘RHS’) are tangent to each other, Fig. 11(c), the matrix compression
failure criterion (LaRC#2, Eq. (81)) is not yet verified. Then, a small increase
in the compressive load results in the two curves not touching each other.
Physically, this means that there is no equilibrium position and catastrophic
failure results, due to unstable rotation of the fibers. It is concluded that
the compressive strength measured for pure axial compression is in this case
actually a failure due to instability, rather than matrix failure.

The values of ¢° and {mqm corresponding to this type of failure can be ob-
tained from the system that results from Eq. (96) and the condition that
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expresses that the left and right hand side of Eq. (96) have the same slope at

C .
Yimom - .

for(Vimgm) = — sin [2 (% 4 Vmgm)]
) om (97)
fCaL(71 2 ) — XC Cos [2 (900 + 7?7”27")] .
Y1mom

Vimom

To summarize, the three variables ¢°, 7{mom and ¢° can be determined by
Egs. (89), (92) and (95) (matrix compressive failure) or by Egs. (95) and (97)
(elastic instability).

If the instability solution occurs for Fj; < 1 (in LaRC#2, Eq. (81)), then
the instability solution must be considered; otherwise the matrix compressive
failure solution is considered. Either way, ¢°, y{mom and ¢° are always defined.

The initial misalignment angle ° is a material property, and could be regarded
as an equivalent angle that embodies microstructural defects (that can trigger
kink-band formation) other than the initial misalignment, like oscillations in
the fiber volume fraction or in the bonding to the resin. Knowing ¢° allows
the establishment of an equation defining the misalignment angle for a generic
plane stress situation, ¢, by using the transformation Eqs. (86),

011 — 022

fer(riman) = =T T2 50 (2.7 + Yymgn))+7i2l 05 (2 (4 + Yymgn)) (99)

and the angle ¢ is obtained from

T (o]
= ﬁ (90 + 71"12"1) . (99>

Note that, in Eq. (98), |72 was used instead of 715 because it is the easiest
way of considering simultaneously the possibility of an initial misalignment
+°.

Solving this equation (where for any load case the only unknown variable is
Yymom ) for non-linear shear responses is probably the most complex task of
the whole model. For most practical cases, Eq. (98) can be simplified without
significant error by assuming small angle approximations:

Jer(Yimam) & (07 + Yimgm) (=011 + 022) + | T12] . (100)

Solving Eq. (100) depends on the particular form of the constitutive law 7 =
for (7). For a linear shear behaviour, Eq. (100) was solved by Davila et al. [5],
resulting in

©°Gz + | s 0

Tam2 Gia + 011 — 022 i (101)
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Fig. 12. Failure envelopes for longitudinal compression acting with inplane shear for
(a) linear shear behaviour and (b) non-linear shear behaviour

For non-linear shear behaviour, there might be no easy way of solving Eq.
(98) or (100) without iterating. Furthermore, Eq. (98) does not always have
a solution, since failure by instability is also possible. If, for a specific load
state, Eq. (98) does not have a solution (this can be easily checked by plotting
the left and right hand side of the equation in a (7, ) space), then failure has
taken place by instability. The envelope for failure by instability is defined
by the system that results from the following two conditions: (i) Eq. (98) is
verified; and (ii) the slope (in a (7,7) space) of the left hand side of Eq. (98)
is the same as the slope of the right hand side. Mathematically, the following
system follows,

011 — 022 . o °
for(Vymgm) = — sin (2 (0% + Yymgm ) + [T12] €08 (2 (¢ + Yymgm))
a mom .
W = — (011 — 022) €08 (2 (0° + Yymom)) — 2 |T12|8In (2 (9% 4 Yymom)) -
1mom

(102)

As long as no instability takes place, the misalignment frame can be defined,
the stresses can be rotated to that frame, and a matrix failure criterion can
be used to check for possible kink-band formation or matrix failure.

Fig. 12 shows the application of this analysis to a biaxial compression in the
fiber and matrix direction for a E-glass/DY063 epoxy used in the WWFE [16].
The material properties used are given by Soden et al. [60] and presented in
Table 2. For the non-linear behaviour, the experimental data stress vs. strain
points given by Soden et al. [60] are used directly by the model (Fig. 13).

Fig. 12(a) shows the different envelopes obtained when using the LaRC04
matrix failure criterion (Eq. (81)) and the Puck matrix failure criterion (Eq.
(74)), considering a linear shear behaviour.

Fig. 12(b) presents the application of this failure model for a non-linear shear
behaviour (see Egs. (92) and (98)). Shear non-linearity was not considered
explicitly; instead, interpolation and extrapolation was used to get the re-
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Fig. 13. Linear and non-linear shear curves for an E-glass/DY063 epoxy used in the
WWFE, experimental points from Soden et al. [60]

quired information from the experimental data points. The linear and non-
linear shear strain vs. shear stress curves are represented in Fig. 13. The effect
of the non-linearity on the envelope—Fig. 12(b)—is seen to be considerable,
which reinforces the importance of a more comprehensive characterization of
composite materials under shear loading.

Note the interesting implications of this model: the failure envelope is de-
pendent on the elastic properties of the material. This is common in fiber
compression failure models and in this case reflects the fact that failure takes
place in a rotating misalignment frame. Indeed, the magnitude of the rotation
of the fibers, v;mym, depends on the shear response.

4.2.2 3D kinking model

The mechanics of kink-band formation is particularly complex. Therefore, a
physically-based model that simulates all the details of kink-band formation—
initiation, subsequent fiber rotation, fiber fracture at kink-band boundaries,
kink-band width, angle, broadening, and that takes into account magnitude,
distribution and orientation of initial defects, in-plane shear non-linearity, and
all this for a generic 3D stress state—does not seem possible. For the validation
of emerging, simplified models, an added difficulty results from the difficulties
in obtaining trustworthy experimental data for compression failure under a
multiaxial stress state. Consequently, the validation of a specific mechanical
model for fiber kinking is bounded to some controversy.

The 2D model for fiber kinking just presented assumes that the initiation of
kink-band formation is triggered by matrix failure due to initial fiber misalign-
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Fig. 14. 3D kinking model

ment. As with most fiber-kinking models, the 2D model assumes that kinking
happens in the plane of the lamina.

However, there is significant evidence supporting the importance of 3D anal-
yses for understanding failure by kink-band formation [61,67-71,73-78]. The
model that follows generalizes the previous one for a generic 3D stress state.

Consider a unidirectional lamina under compressive stress as shown in Fig.
14(a). The stresses acting on the (2,3) plane are shown in Fig. 14(b). The
kink plane is at an angle ¢ with the 2 axis, as shown in Figs. 14(c) and (d).
The actual value of the angle 1) depends on the particular stress state®. A 2D
kinking model assumes that the angle ¢ in Fig. 14(c) and (d) is equal to zero.
If the composite is constrained so that it cannot move laterally, then the kink
plane would have an angle 1) = 90°. In general, ¢/ will have a value between 0
and 180°.

The local stresses in the (2,3) plane can be found as a function of ¢ through
the use of transformation equations. For a potential kinking plane oriented
at an angle 1, a negative stress o3y3» Will act as to close microcracks in the

3 In reality, defects as fiber initial misalignment are not necessarily homogeneously
distributed and the kinking plane orientation could in fact also be influenced by a
particular distribution
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matrix for alternative kinking planes, while a positive gquqw will act as to
open microcracks thus favouring kinking in that plane. Therefore, the kinking
plane is expected to be created at the orientation that maximizes oys9» and
minimizes 03450, Which coincide with the local principal directions. Another
argument is that the reduced shear stiffness in the kink band would result
in fibers rotating in different directions, in case Tyu3+ Was nonzero—however,
experimental observations support the contention that kink bands lie in a
plane.

With the assumption that the kink plane happens at an angle such that
Towsw = 0, the value of the angle 1 that defines the kink plane is given by

27’23

tan (2¢) = (103)

022 — 033
The stresses in the kink plane are defined as

092 + O 099 — O )
O —— 5 38, 22 5 % cos (200) 4 T3 sin (20)

O3v3y = 0929 + 033 — Oouou

Tigv = T12 €08 () + 731 5in (¥) (104)

Toygy = 0

T3y1 = T31 COS <¢) — T12 sin (1p> .

After defining the kink plane, the stresses are then rotated to the misalign-
ment frame. This misalignment frame is defined by first determining v;mqm by
solving the following equation iteratively:

011 — Ogvov

Jer(Yymom) = — sin (2 (¢° + Yymom)) + |T12v| €08 (2 (7 + Yymom)) -
(105)
After obtaining 7ymym from Eq. (105), the angle ¢ is obtained from
= T2 (6" + Yumgm). (106)
st

If Eq. (105) has no solution, then failure has taken place by instability. Oth-
erwise, the misalignment frame is defined and the stresses can be rotated to
it to check for matrix failure. In the misalignment frame, the stresses can be
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written as

011+ o 011 — O .
Oymm = — 5 ACANE 5 22% 008 (2¢0) + Tigv Sin (2¢)

O9mom = 0711 + O9yoyp — O1mim

011 — Ogvay
2

Tamge = Tougw €08 () — T3u1 sin ()

sin (2¢) + T19s cos (2¢p) (107)

Timom = —

Tgvim = Tavv €08 () -

The LaRC04 criteria for matrix tension failure, Eq. (40), and matrix compres-
sion failure, Eq. (81), can be applied in the misalignment frame to predict
failure. The type of failure predicted is matrix failure, and this might or not
promote subsequent fiber kinking. While it might be trivial in some cases to
predict that subsequent fiber kinking takes place—like for pure compression
in the fiber direction, the same is not true for all load combinations.

For ogomam < 0, it seems reasonable to assume that failure is by kink-band
formation only if Eq. (81) is verified with o = 0. Otherwise, the failure is
considered to lead to matrix failure, without kink-band formation. Thus, kink-
band formation with gomem < 0 is predicted with the criterion

’T1m2m’

LaRC04 #4 Flp = <1 (108)

L
Sis — ntogmam

while matrix failure under biaxial compression is predicted by

7_Tm 2 7_Lm 2
LaRC04 #5  FI, = (ST) + <SL> <1 (109)

—nlom —ntoy
with
o — Ogmom ; 03¢ 30 I Ogmam 2_ Tavsw o8 (2ar) + Tomze sin (2ar)
Tm _ _%ﬂ sin (2av) + Tomgy cos (2a) (110)
7™ = Timgm cos (@) + Tyuqm sin (@)

where the angle «, which is comprised in the interval ]0,7[, is obtained by
trying a small number of tentative angles.

For ogmam > 0, it seems more difficult to agree on a criterion for eventual fiber-
kinking after matrix failure, in the absence of experimental data. Possible
solutions to identify the conditions triggering fibre-kinking are the use of a
threshold value for o1, or to consider fibre-kinking when the last term of Eq.
(40) is equal to 1. Without further support from experimental data, X¢/2 is
taken here as the threshold value. Thus, for ogmem > 0 and from Eq. (40),
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the criterion for matrix tensile failure under longitudinal compression (with
eventual fiber-kinking) is,

2
O9mom T9mom
LaRC04 #6 Flyyp=(1-9) 2y12~ +9< ;z% ) +
AO 2m mom
n 2372 3¢+X(71 om) <1 (111)

X (’yqllQ\is)

5 Applications

5.1 Failure envelope (099, T12)

A comparison of results from various failure criteria with the experimen-
tal results in the (092, 712) stress plane for an unidirectional composite E-
glass/LY556, is shown in Fig. 15. The material properties and test results
were reported in the WWFE by Soden et al. [60,86]. The compressive, tensile
and shear strengths shown in Table 3 were obtained by averaging the corre-
sponding test data presented in Refs. [60,86]. To apply the Puck tensile matrix
failure criterion, it was assumed that (0712/002)|,,_o- = (0712/002)|,,—_o+-
The envelopes for Hashin’s 1980 criteria and Sun’s criteria were calculated us-
ing a transverse shear strength obtained from Eq. (68). The friction parameter

n* for Sun’s criteria was obtained from Eq. (75) with n7 from Eq. (67).

It can be observed that within the positive range of o9, all the quadratic
failure criteria and LaRC04 give satisfactory results. The most interesting
behavior develops when 055 becomes compressive. Hashin’s 1973 criterion gives
an elliptical envelope with diminishing 715 as the absolute value of compressive
099 increases, while the experimental data shows a definite trend of shear
strength increase as 095 goes into compression.

The envelope for Hashin’s 1980 criteria provides a modest improvement in
accuracy compared to the 1973 criterion. Of the criteria shown in Fig. 15,
Sun (Eq. (76)), LaRC04 #2 (Eq. (81)), and Puck (Eq. (74)) capture the shear
strength increase at the initial stage of compressive g95. The results indicate
a significant improvement over Hashin’s criteria.

Fig. 16 shows the application of LaRC04 for AS4/55A, tested by Swanson et
al. [87]. The material properties used are given in Table 3. The predictions
for T800/3900-2 composite tested by Swanson et al. [77] are shown in Fig. 17,
and the material properties in Table 3.
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Table 3
Mechanical properties of E-glass/MY750, from Soden et al. [60,86]

Material E FEoo G Sk YT yc© O
(GPa) (GPa) (GPa) (MPa) (MPa) (MPa) (°)
E-Glass/LY556  53.48 17.7 5.83 66.5 37.5 130.3 53

AS4/55A 126 11 6.6 51.3 27 91.8 53
T800/3900-2 155 8.5 5.5 100.9 48.8 201.7 53
T1p (MPa)

LaRCO4 42 % T uck 1007

x Experimental, e

LaRC04 #1

® Average of
experimental,
input for the
criteria

Hashin
Hashin 73 x
Hashin ’80

-150 -100 -50 0 50
022 (MPa)

o

Fig. 15. Failure envelopes and WWFE test data for unidirectional composite
E-Glass/LY556

5.2 Failure envelope (011, 092)

All of the failure modes represented by the six LaRCO04 criteria (Egs. (40),
(81), (82), (108), (109) and (111), and summarized in the Appendix) can
be represented as a failure envelope in the (01, 02) plane. Testing for biaxial
loads presents a number of complexities, and experimental results are rare.
However, Waas and Schultheisz [88] report a number of references in which
multiaxial compression was studied by superposing a hydrostatic pressure in
addition to the compressive axial loading. For all materials considered, there
is a significant increase in compressive axial strength with increasing pressure.

As an example, a test case from the WWFE [1] is studied here: the biaxial
compression of a 0° E-glass/MY750 epoxy lamina, with material properties
given in Table 4. In addition to those properties, the in-plane Poisson’s ratio
is 119 = 0.278 and the fracture angle for pure in-plane transverse compression
is a, = 53°. For the application of the model with non-linear shear behaviour,
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Fig. 16. Failure envelopes and test data from Swanson et al. [87], for an AS4/55A
composite
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Fig. 17. Failure envelopes and test data from Swanson et al. [77], for an T800/3900-2
composite

the experimental curve given by Soden et al. [60] is used directly. The linear
and non-linear shear laws are plotted in Fig. 18(a).

For the LaRC04 3D kinking model, the kinking angle is predicted using Eq.
(103). The magnitude of o3 is unknown, and depends on the existence of
constrains on the 3 direction. Therefore, the 2 roots of Eq. (103) must be
considered and are ¢y, = 0° and 1, = 90°, meaning that the kink plane can
either be in the plane of the lamina, or in the through-the-thickness direction.
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Table 4
Mechanical properties

Longitudinal Transverse Shear
Tensile Compression Tensile Compression
Modulus (MPa) 1280 800 40 145 73
Modulus (GPa) 45.6 16.2 5.83
— Linear MPa
- - - Nonlinear Fly 572 ( ) #1
le (MPa) ‘ R ‘ ‘ 0-11‘(:\'11—’;1)
71600 560 ldOU 1500
#4
50 1 0l
#3
-100 4
0 : |
0 0.02 004 TN #2
Y12 T50 L

(a) (b)

Fig. 18. (a) Linear and non-linear shear law; (b) biaxial (o1, 02) failure envelope of
0° E-glass/MY750 epoxy lamina, assuming a kink band in the plane of the lamina

Assuming first that the kink band develops in the plane of the lamina (¢ = 0°),
either due to the micromechanics of the material or imposed by the testing, the
failure envelope comes as in Fig. 18(b). Puck’s analysis results, which showed
a particularly good correlation with experimental results in the WWFE [1],
is also shown for comparison. In the figure, there is good agreement between
LaRC04 and Puck in all quadrants except biaxial compression, where LaRC04
predicts—for a kink band developing in the plane of the lamina—an increase
of the axial compressive strength with increasing transverse compression.

If it is assumed that the kink band is formed in the through-the-thickness
direction (second root of Eq. (103), ¢ = 90°), the envelope shown in Fig.
19(a) is predicted. If the orientation of the kink plane is unrestricted, the
envelope in Fig. 19(b) is obtained.

5.8 Auxial compression with superposed hydrostatic pressure

There is not much experimental data on fiber kinking under a multi-axial
stress state. One exception is the compressive behaviour of composite rods
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Fig. 19. Biaxial (011, 092) failure envelope of 0° E-glass/MY750 epoxy lamina (a)
assuming through-the-thickness kinking; (b) assuming that there are no restrictions
to the kinking plane

with superposed hydrostatic pressure [89,90].

Wronsky and Parry [89] made a characterization of the effect of hydrostatic
pressure on the compressive strength for a glass fiber reinforced composite. The
compressive strength without superposed hydrostatic pressure was measured
as 1150 MPa. Three values of shear strength are reported, depending on the
test method and specimen dimensions, 42, 48 and 59 MPa. The biggest value of
the three is used herein, because it is expected to be the most representative of
the three. These material properties are not sufficient to completely define the
material. Therefore, some material properties have to be assumed from their
typical values. The shear modulus is 6.6 GPa, the fracture angle in matrix
compression is o, = 53°, and the transverse compressive strength is 140 MPa.
Linear and a non-linear approximations of the material’s shear response are
shown in Fig. 20(a). The non-linear curve uses the logarithmic? function 7 =
kiln (kyy 4+ 1), with &y = 200 MPa and ky = 33, which yields the correct
initial shear modulus, G5 = ki1ks = 6.6 GPa, and matches particularly well
the experimental points, as shown in Fig. 20(b). The same figure shows that,
considering a linear shear model, the global trend is captured, but an over-
prediction of the axial strength results for the higher values of superposed
hydrostatic pressure.

Parry and Wronsky [90] compressed 8 mm carbon-epoxy rods for several values
of superposed hydrostatic pressure. Three values of compressive strength at
atmospheric pressure are reported (depending on the test specimen’s batch
and its shape): 1.3 MPa, 1.33MPa and 1.5 MPa. The corresponding average
is considered here. The shear strength reported is 75 MPa. As before, some
material properties have to be assumed to apply the present model. The shear

4 A logarithmic function is used because, while correctly representing the shear
non-linear behaviour of composites, it can be easily inverted
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Fig. 20. Test case corresponding to Wronsky and Parry’s [89] experiments (a) linear
and non-linear shear curves considered; (b) compressive strength as a function of
the hydrostatic pressure
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Fig. 21. Test case corresponding to Parry and Wronsky’s [90] experiments (a) linear
and non-linear shear curves considered; (b) compressive strength as a function of
the hydrostatic pressure

modulus is 6.6 GPa, the fracture angle in matrix compression is «, = 53°, the
transverse compressive strength is 170 MPa. The predictions for a linear shear
model (Fig. 21(a)) are shown in Fig. 21(b). The effect of shear non-linearity
is the same as for the previous example. Considering the non-linear stress
vs. strain curve in Fig. 21(a) (logarithmic curve, 7 = kyln (koy + 1), with
ki = 120 MPa and ko = 55, which yields the same initial shear modulus), the
predictions in Fig. 21(b) are in good agreement with the experimental points.

The comparison of experimental results and predictions in Figs. 20 and 21
suggests that the physics of the compressive behaviour is captured by the
kinking model.

5.4 Cross-ply laminates

Shuart [73] studied the compression failure of [+£6]; laminates and found that
for # < 15°, the dominant failure mode in these laminates is interlaminar
shearing; for 15° < 6 < 50°, it is in-plane matrix shearing; and for 6 > 50°, it
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Table 5
Material properties of AS4/3502

En Es9 G2 vis Sk y¢ X¢
(GPa) (GPa) (GPa) (MPa) (MPa) (MPa)
127.6 11.3 6.0 0.3 95.1 255 1045

Compressive strength (MPa)

1200 +
Hashin, 1980
1000 ° S
800 - o Experimental (Shuart, 1989)
600 +
#2 #
400 + 2 pac 2
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0 10 20 30 40 50 60 70 80 90
Lamination angle (°)

Fig. 22. Compressive strength as a function of ply orientation for AS4-3502 [+6)],
laminates

is matrix compression. Fiber scissoring due to matrix material non-linearity
caused the switch in failure mode from in-plane matrix shearing to matrix
compression failure at larger lamination angles. The material properties used
for the analysis are given by Shuart [73] and shown in Table 5. Further to those
properties, the fracture angle in pure transverse compression is considered to
be o, = 53°.

The results shown in Fig. 22 indicate that the predicted strengths using
LaRCO04 criteria correlate well with the experimental results. The compres-
sive strength predicted using Hashin’s 1980 criteria is also shown in Fig. 22.
For 6 < 20°, the Hashin criterion for fiber compression results in an over-
prediction of the failure load because the criterion does not account for the
effect of in-plane shear on fiber failure. For lamination angles near 70°, the
use of the Hashin criteria result in an under-prediction of the failure load
because the criteria do not account for the increase in shear strength caused
by transverse compression. All of these effects are correctly captured by the
LaRCO04 criteria, which results in a good correlation between the calculated
and experimental values.
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6 Conclusions

Material models based on the physics of failure can yield criteria that succeed
in predicting failure under a broad range of load combinations. Consider-
ing the current difficulties in accurately predicting failure [1], the ability of
physically-based models to capture the physics of the failure process and cor-
rectly predict failure envelopes is particularly significant and should encourage
further research. In this paper, physically-based models of the different failure
modes result in a set of six physically-based failure criteria devoid of empirical
variables—the LaRC04 criteria—that can be used directly by the designer. A
few considerations on the models presented are now discussed; some of them
will be the focus of further work.

Non-linear shear behaviour is an important factor affecting strength in a gen-
eral loading situation. Furthermore, it is known that the shear behaviour de-
pends on the stress in the in-plane transverse direction (the shear response
gets “stiffer” with compressive transverse stresses [6]). In the future, it would
be desirable to consider the dependence of the shear stress on eventual su-
perposed transverse stress. Furthermore, the shear strength reported in the
literature is often the shear stress at some strain level—as recommended by
actual standard methods [91]. Although convenient for design purposes, this
value of the shear stress has no direct correspondence with failure and is mean-
ingless for physically-based failure models.

For fiber kinking, only matrix failure (as well as some form of instability) is
assumed to trigger the failure. This consideration is believed to be accurate for
carbon-reinforced composites. However, a more general model that includes
the possibility of fiber buckling, as well as fiber failure itself would be desirable.
Furthermore, the strength in a generic loading situation is very sensitive to the
initial fiber misalignment angle. However, this misalignment angle results from
manufacturing limitations, and should be expected to be different for panels
or components with different dimensions and geometry. Therefore, the value
measured using standard compression specimens could not be representative
for other more complex components. Finally, residual stresses—present in the
compression specimens—affect the value measured of the fiber misalignment
angle. In more complex components, the residual stresses will certainly be
different, and relax over time, which restricts the applicability of the proposed
model, and should be addressed in the future.
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Appendix - Pragmatic solution for the critical energy release rates

for non-linear shear behaviour

Introduction

Consider a generic solid made of a linear elastic material with an initial crack—
Fig. 23(a). Let the crack grow by an area 0A. The energy absorbed by the
solid to create the surface of area 0 A is OW;. Neglecting thermal effects, energy
balance requires 0W, to be equal to the energy transferred to the body through
external work, OF', minus the change in strain energy OU of the body, i.e.,

oW, = 0F — oU.
By definition of energy release rate G, it follows that

oW, 9F—0U ol

G 0A 0A —  0A

where II is the potential energy defined as Il = U — F.

Considering the diagram in Fig. 23(b), it can be concluded that

1
aU:;(P+8P)(A+6A)—2PA

and

0A

(a) vP (b)

(112)

(113)

(114)

Fig. 23. (a) Generic cracked body being loaded; (b) load displacement curve corre-

sponding to a crack length 2a (i) and 2 (a + da) (ii)
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OF = POA + ;8P8A - (P + a;) oA (115)

Thus,
1
O(F—-U) = 3 (POA — AOP) (116)
and the critical energy release rate is expressed as
1 0A  OP 1 0A OP
G:2<PaA—aA>:2b<Paa‘m> (117)

where b is the thickness of the solid and a is the crack length. Defining the
compliance C of the cracked body as

C:

A
5 (118)

it follows that
O0A = POC + COP (119)

and, designating the load at onset of crack propagation as P,., the critical
energy release rate is

_ P2oC

Ge= i (120)

Non-linear in-plane shear behaviour

Considering the energy release rate given by Eq. (113), but carrying the differ-
entiation at constant displacement of the load application-points, hence with
no work done by the external forces, it follows, at onset of crack propagation,

- (gg) = G.. (121)

Following the approach first proposed by Rivlin and Thomas [92], the assump-
tion is made that the presence of a crack in a body will reduce the strain-energy
density to zero over a well-defined volume V', and will not affect it outside that
area. Let the uniform strain density of the uncracked body be

Eij
WO :/ O-ijdgij (122)
0
and for the particular case of pure in-plane shear loading

Y12
WOZ/O Ti2dY12. (123)
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The loss in strain energy due to the presence of the crack is
1
- (U - UO) = WOV = §X (’712) Vv (124)

where .
X (12) =2 /0 T12d712 (125)

and U, is the strain energy of the body for the situation without a crack. The
critical energy release rate is

1 uy OV
Grre = §X (’712) 87 (126)

Consider first the situation where the elliptical crack grows in the transversal
direction. The area of the crack is proportional to a,a; and thus

0A x ar0a,. (127)

The volume where the strain energy density is reduced to zero due to the crack
can be assumed to be proportional to a?a;, and thus

oV x a,ar0a,. (128)

It follows from Eqs. 127 and 128 that

ov
aiA X Agp. (129)

In order to recast Dvorak and Laws’s solution for linear elastic materials [9],

the constant of proportionality in Eq. 129 has to be w. Thus, the expression
for Gyr.(T) results:

Ta,

Gr1e(T) = TX (712) - (130)

Proceeding in the same way for propagation in the longitudinal direction, the
following expression results:

Ta,

Grie(L) = TX (712) - (131)
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Appendix - Summary of LaRCO04 failure criteria

The LaRC04 criteria is summarized in Table 6. The required unidirectional
material properties for the criteria are: Fi1, Fas, Gia, 112, X©, X, YT Y,
St Gre, Gire. The following optional properties may be provided: n*, a,,. The
expressions needed to obtain the parameters used in in Table 6 are given in
following sub-sections.

FExpressions for matriz tensile failure

The in-situ strength values for thick embedded plies are

YT =1.12y/2Y"T and

(132)
Mais = X' [2x (72)]-
The in-situ strengths for thin embedded plies are:
yT — 8Gre
' wtAS, 1 2
where AJ, =2 ( — 21) : (133)
Es  En
" 1 <8Gllc)
T2is = X T
7t

The toughness ratio ¢ is obtained from fracture mechanics test data or from
the unidirectional properties. For a thin embedded ply,

G,
g=—5, 134)
GIIC (

otherwise, g can be obtain from either of the following expressions:

(135)
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Expressions for matrix compressive failure

The fracture angle for pure transverse compression can be considered as a, =
53° if no experimental value is available. The friction parameter n” is obtained

from
1
tan(2a,) = T (136)
the transverse strength ST is defined as
ST =Y cos (a,) | sin (o) + 05 (@) (137)
? 7 tan (2ay,)

and, in the absence of experimental data to obtain n”, this is defined from the

relation
L T

Ui n
The stresses in the potential fracture planes (in the interval o € [0, 7]) are
obtained with

099 + 033 022 — 033

oy = 5 5 cos (2ar) + o3 sin (2a)
T _ 922 ;— 933 _ 022 ; 988 sin (2a0) + T3 cos (2a) (139)
7L = 715 cos (o) + 731 sin (@) .

FExpressions for fiber kinking and for biaxial compressive failure

For the determination of V{mom, ©° and ¢ a two steps solution is required,
since kinking can be promoted by instability or matrix failure®. The solution
for instability results from solving the following system for ¢° and 7{mqm

C
foL(Vimom) = ——5sin 2 (¢° + Yimam)] (140)
Hpmand| = —XC o8 [2(¢ 4 2man)]
Timam 'Yfmgm

and ¢° follows as ¢ = ¢@° + Y{mom. If this solution is verified with Fj; < 1
(in LaRC04 #2, Eq. (81) or from Table 6), then the instability solution must
be considered; otherwise the matrix compressive failure solution is considered,
and ¢, Yimom and ¢ are defined as follows:

® For a linear material, there is no need to check for the instability solution
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1—\/1—4()32+nL);§Z
2 ()S{—LC + nL)
c — 1 : c
Vomgm = foi (281n (2 )XC) (142)

where fop is the in-plane shear constitutive shear law. For a linear behaviour
it simplifies to

¢ = arctan (141)

. QOCXC
Yim2 e ( )

Either way, the initial misalignment angle comes then as

©° = ©° = Yimgm.- (144)

The plane where kinking takes place is defined by

2To3
tan (29) = ——— (145)
and the stresses rotated to that plane are

Oowop = o2 —g 933 | I ; 033 o8 (21)) 4 Tog sin (2¢))
Ogwgw = 022 + 033 — Ogugv
Tigw = T12 €08 (1) + 731 8in (1)) (146)
Towgy = 0
Tawy = T31 €08 (1) — T1gsin ().

The shear strain in the misalignment frame ~{,.,m. is obtained by iteratively

solving the equation

011 — Ogyov . o °

——————sin(2(¢° + Yymam)) + |T120| €08 (2 (07 + Yymam))
(147)

which, for a linear shear behaviour and with small angle approximation reduces

to

ferL(imgm) = —

©°Grg + |10
p— —° 148
Tima Gia + 011 — 092 4 (148)
and the angle ¢ comes as
T12v
== (7 + Yimam) - (149)
|T120|

Eq. (147) does not always have a solution, since failure by instability is also
possible. If; for a specific load state, Eq. (147) does not have a solution (this
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can be easily checked by plotting the left and right hand side of the equation
in a (v, 7) space), then failure has taken place by instability. The envelope for
failure by instability is defined by the following system:

011 — Ogqvaoy . o o
for(Vimagm) = _% sin (2 (0° + Yimom)) + |T120| €08 (2 (0° + Yimgm))
0] mom o o o
% = — (011 — Ogu9v) €08 (2 (97 + Yymgm)) — 2|T120| 80 (2 (¢° + Yymom)) -
(150)

If Eq. (147) has a solution (and thus the material has not failed by insta-
bility), matrix failure is checked next. After knowing the orientation of the
misalignment frame, the stresses can be rotated to it using

011 + Ogwow 011 — Oguow

Tymim = 5 + 5 cos (2¢) + Tgv sin (2¢)

Ogmom = 011 + Ogvgw — Opmm

Tymom = —w sin (2¢) + Ty9v cos (2¢) (151)
Tomzw = Towgw COS () — Ty sin ()

Tgwim = Tavyv €08 () -

For biaxial compression failure, the rotation to the potential fracture planes
(in the interval a € |0, 7[) are obtained with

om = gamam ;— Oavav , Trmam —O3080 (2a0) + Tym3w sin (2ar)
rim = —M sin (2a0) + Tymgw cos (2a) (152)

7™ = Tymgm cos (@) + Tgum sin (@) .

For oggmom > 0, it is considered that fiber kinking follows matrix failure only
if 011 < —XC/2
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Appendix - Particularization of the non-linear shear behaviour for
a 3" order polynomial

The LaRC04 criteria presented here accounts for a generic non-linear shear be-
haviour. Any expression for non-linear shear can be used, such as a polynomial,
a logarithmic, any other best fit to experimental data or the experimental data
itself. This appendix presents the particularization of the criteria for Hahn and
Tsai’s 3" order polynomial representation for shear non-linearity [50]:

1
Y12 = G77'12 + <712)3 (153)
12

with 3 obtained from the shear tests (§ = 0 for linear behaviour).

FExpressions for matriz tensile failure

The in-plane shear strength of thick embedded plies and thin plies have the
same general form,

" (1486 (G)*)" —1

is 3ﬁG12 (154)
where the parameter ¢ is obtained as:
12 (SL>2 79 4
¢ = an + Zﬂ (SL) for a thick embedded ply (155)
4
¢ = 8:7;]]0 for a thin ply (156)

A linear shear behaviour is obtained when the constant ( tends to zero in Eq.

(153)

1/2
14+ 66(G)*) " =1 [oG
lim Sk = li ( = =, 157
CR 36Gs 6 (157)
The particular values of the in-situ shear strengths for a linear shear behaviour

can thus be expressed as

SL — /a8t for a thick embedded ply (158)
Sk = 8G1zfnc for a thin ply (159)
T
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Expressions for fiber kinking and for biaxial compression failure

Initial misalignment angle For the determination of {mom, ¢ and €, a
two steps solution is required, since kinking can be promoted by instability
or matrix failure®. The solution for instability results from solving iteratively
the following system for ¢° and 7{mgm

XC 3 (o] C C 3
1
= —X%cos |2 (0% 4+ A—TCngm + B (TEngm 3
GLm‘l'Sa(Tlchm)z |: ( Gio ' 1M2 ( 1m2 ) >:|

and then compute Y{mom and ¢ as
c 1 c c 3

Yimom = Gfﬁmm + B (Timgm) (161)

12
@ =Yimam + ©°. (162)

If this solution is verified with F; < 1 (in LaRC04 #2, Eq. (81) or from Table
6), then the instability solution must be considered; otherwise the matrix
compressive failure solution is considered, and ¢° is determined from Eq. (141),
Vi{mom comes from

1 /1 1 3
Vimom = —— < sin (2¢°) XC) + 4 ( sin (2¢°) XC> (163)
G \2 2

and ¢? = ¢ = Yimom.

Current misalignment frame The shear strain in the misalignment frame
Yimom 1s Obtained by iteratively solving the equation

1

Yimom = S —
GIZ

T (Vymom) + B [T*Wlmw)]g (164)

with

01 — Ogy

5 Sin (2 (9% 4 Yymom)) + |T190| €08 (2 (0 + Yimom)) -

(165)

" (’YlQO) = -

Eq. (164) does not always have a solution, since failure by instability is also
possible. If, for a specific load state, Eq. (164) does not have a solution (this can
be easily checked by plotting the left and right hand side of the equation), then

6 For a linear material, there is no need to check for the instability solution
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failure has taken place by instability. The envelope for failure by instability is
defined by the following system:

Timom = —w sin (2 (SOO + G%J’lmzm +8 (Tlm2m)3>) n

el 08 (2 (¢ + ciioan + @ (1nan)’))
2 — = (011 - azwgw) cos (2 (gpo + G%QTWW + (TlQO):a)) _

G%z + 30 (Timam)
—2 |7'12w| sin (2 (QOO + é71m2m + ﬁ (TlQO)g)) ‘

(166)
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